If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2-12=0
a = 16; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·16·(-12)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*16}=\frac{0-16\sqrt{3}}{32} =-\frac{16\sqrt{3}}{32} =-\frac{\sqrt{3}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*16}=\frac{0+16\sqrt{3}}{32} =\frac{16\sqrt{3}}{32} =\frac{\sqrt{3}}{2} $
| 64=32^-x+5 | | 12x-2+7x+4=34 | | 15x=735 | | 12x=636 | | 12x-2+7x+4=146 | | 8x+14=12-6x | | 9s-1/3=11/3 | | x+4/10=3/15 | | 2x+x/2=90 | | 6m^2=-2+3m | | 9s-1/3=11/2 | | 5v+10=-4v-17=9-2v | | 35=49-x | | Y=-6x+7;(8,1) | | -3(a-3)=-18 | | 2(x+1)+1=13 | | -7+4(6v+2)=145 | | 7x+3x=36 | | 16.4=x | | 2x−4=−1−2x | | x2+10x+25=100 | | |2a-3|/2=5 | | 10x+4+11x-5=146 | | 3/4+x/5=7/10 | | x+56=412x+56=412 | | 2x80=2x8x | | 3(g-7)+5=2(10+g)+(2+3) | | a=5+8/2-3 | | 5+4(n+9=-3 | | x2+10x-75=0 | | 3-(a-3)=-18 | | -4(3y+1)+13=-5+2 |